Reducing Gear Noise with an Orbitless Primary Stage Modeled in SimulationX – 3.9.2

Robert Eisses, CEO Orbitless Drives Inc.
Outline

• Motivation
 • Noise-Sensitive Applications
 • R&D with unsupported Configurations

• Orbitless Drive
 • Overview
 • Strengths & Weaknesses (vs Planetary)
 • Simulated & Experimental Results
 • MBS Model

• Applications
 • 16mm Orbitless Conventional
 • 100mm Orbitless Compound
Gear-Motors in Human Environments
Orbitless Drive

Ring Gear

Offset Carrier
L. Stocco, “The Orbitless Drive”, 2016 ASME IMECE
Strengths & Weaknesses

Pitch Velocity: \(w=1, M=1, Z_s+Z_p=36 \)

\[
i = 1 + \frac{Z_{\text{planet}}}{Z_{\text{sun}}} \\
i = 2 \left(1 + \frac{Z_{\text{planet}}}{Z_{\text{sun}}} \right)
\]

Large Surface Area
Thin Metal = High Pitch

Chain Reaction
Repulsion
Vibration
Simulation X MBS Models
Model Verification: Pin Force
Predicted Losses

Tooth Friction Losses

- Planetary: 1200 (mW)
- Orbitless: 600

Efficiency

- Planetary: 92%
- Orbitless: 83%
Predicted NVH

Radial Force

Sun Force
Net
Ring Force

Planetary
Orbitless

Teeth mesh at 1243 Hz @ 7,000 RPM

≈ 1200 Hz

≈ White noise
Measured NVH

16mm OD 2.77:1 / 3.9:1
Independently Measured NVH

• OTS Planetary
 • 0 dBA @ 6,000 RPM (ref)
 • -15 dBA @ 2,000 RPM

• Prototype Orbitless
 • -5 dBA @ 6,000 RPM
 • -20 dBA @ 2,000 RPM
<table>
<thead>
<tr>
<th>Application (100:1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbitless</td>
</tr>
<tr>
<td>• Min Noise</td>
</tr>
<tr>
<td>• Min Losses</td>
</tr>
<tr>
<td>Planetary</td>
</tr>
<tr>
<td>• Max Ratio</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ω</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>2,500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5 4:1</td>
</tr>
<tr>
<td>-15 5:1</td>
</tr>
<tr>
<td>-30 5:1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>100 (RPM)</th>
</tr>
</thead>
</table>

100 (RPM)
Compound Orbitless Drive

21:1 Worm Drive

100mm Compact Multi-Stage (105:1)

5:1 Compound Orbitless Drive
Simulation X MBS Model
Simulation Results

Input Speed (RPM)

Output Speed (RPM)

Efficiency
• SimulationX enabled us to be able to model unique Orbitless configurations
• High correlation between Simulated and Actual results
• Orbitless is a valid Low Noise 1st stage solution

roberte@orbitless.com
+1 604 724 3719